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Characterizing the protospacer adjacent motif (PAM) requirements of

different Cas enzymesis abottleneck in the discovery of Cas proteins and
their engineered variants in mammalian cell contexts. Here, to overcome
this challenge and to enable more scalable characterization of PAM
preferences, we develop amethod named GenomePAM that allows for direct
PAM characterization in mammalian cells. GenomePAM leverages genomic
repetitive sequences as target sites and does not require protein purification
or synthetic oligos. GenomePAM uses a 20-nt protospacer that occurs
~16,942 times in every human diploid cell and is flanked by nearly random
sequences. We demonstrate that GenomePAM can accurately characterize
the PAM requirement of type Il and type V nucleases, including the minimal
PAM requirement of the near-PAMless SpRY and extended PAM for CjCas9.
Beyond PAM characterization, GenomePAM allows for simultaneous
comparison of activities and fidelities among different Cas nucleases on
thousands of match and mismatch sites across the genome using a single
gRNA and provides insight into the genome-wide chromatin accessibility
profilesin different cell types.

Inprokaryotes, the CRISPR-Cas system provides antiviralimmunity by
recognizing and disruptingintruding viral DNA through DNA sequence
recognition'. This system has been harnessed for precise genome
editing in various organisms and cell types'. Identifying naturally
occurring Cas nucleases and engineering Cas enzyme variants with
different features is crucial for various research and clinical applica-
tions. CRISPR-Cas nucleases form protein:DNA contacts to initiate
target site recognition through a protospacer adjacent motif (PAM)* ™.,
The location (5’ or 3’ of the spacer) and sequence of the PAM differs
among different types of CRISPR-Cas system'?; however, efficient
and accurate identification of PAM requirements in eukaryotic cells
remains a bottleneck in the discovery and characterization of novel
Casnucleases and their engineered variants.

Various methods have been developed for PAM identification,
including in silico™ and in vitro cleavage assays'>"* ¢, bacterial-based

assays”'® including the PAM screen achieved by NOT-gate repression
(PAM-SCANR)Y, cell-free transcription-translation (TXTL) systems'",
fluorescence-based” assays including the PAM definition by observ-
able sequence excision (PAM-DOSE)?, human cell library-based
approaches*?* and scalable human cell expression followed by the
invitro cleavage reaction hybrid method, high-throughput PAM deter-
mination assay (HT-PAMDA)***. Each method has its own advantages
and limitations (reviewed elsewhere>*).Ingeneral, insilico and bacte-
rial depletion results may not be easily translated to mammalian cell
contexts. In vitro cleavage assays have the advantages of managing
large libraries™; however, in vitro methods require laborious protein
purification, and the cleavage kinetics may not accurately reflect the
conditionsinaliving organism. Previousin vivo methodsrequireintro-
ducing synthetic random oligos as PAM candidatesinto live cells, which
are challenging for maintaining high-diversity sequence libraries.

A full list of affiliations appears at the end of the paper.

e-mail: Zongli.Zheng@cityu.edu.hk

Nature Biomedical Engineering


http://www.nature.com/natbiomedeng
https://doi.org/10.1038/s41551-025-01464-y
http://orcid.org/0000-0003-1600-7859
http://orcid.org/0009-0009-8620-5624
http://orcid.org/0000-0001-9161-3993
http://orcid.org/0000-0002-5469-0655
http://orcid.org/0000-0003-4849-4903
http://crossmark.crossref.org/dialog/?doi=10.1038/s41551-025-01464-y&domain=pdf
mailto:Zongli.Zheng@cityu.edu.hk

Article

https://doi.org/10.1038/s41551-025-01464-y

Moreover, fluorescence (GFP or RFP)-based enrichments are associated
with particularly low efficiency.

Repetitive sequences in the mammalian genome, flanked by
diverse sequences, are a potential resource for characterizing the
PAM preferences of naturally occurring and engineered Cas nucle-
ases. Here we developed a direct PAM identification method called
GenomePAM, which uses highly repetitive sequencesin the mammalian
genome. To characterize the PAM requirements of Cas enzymes, we
identified genomic repeats flanked by highly diverse sequences where
the constant sequence can be used as the protospacer in CRISPR-Cas
genome editing experiments. The cleaved genomic regions can
then be analysed using methods such as the genome-wide unbiased
identification of double strand breaks (DSBs) enabled by sequenc-
ing (GUIDE-seq)” that enriches double strand oligodeoxynucleotide
(dsODN)-integrated fragments by anchor multiplex PCR sequencing
(AMP-seq)”. GenomePAM is highly efficient and accurate at charac-
terizing the mammalian-cell-based PAM of an enzyme because every
single cell contains just one full set of identical-complexity candi-
date PAM library. GenomePAM can also simultaneously assess the
potency of thousands of on-target sites across the genome and the
fidelity of tens of thousands of potential off-target sites of a Cas nucle-
ase, facilitating performance comparison of different Cas nucleases.
Moreover, GenomePAM can be used to better understand and compare
genome-wide chromatin accessibility profiles of different cell types.

Results
Method design
The human genome contains highly repetitive sequences®®, most of
which are not suitable for use as protospacers due to low-complexity
flanking sequences. However, asubset of these sequences can be used
for PAM preference identification, provided they have the following
features: (1) The number of unique flanking sequences of agivenlength
in the human genome is comparable with, or not significantly smaller
than, the number of potential PAMs to be tested. For example, the PAM of
SpCas9 (Streptococcus pyogenes Cas9) andits variants may range from1
to3bases; therefore, the number of unique 3-nt-long flanking sequences
should preferably be 64 (=4%). In the case of a SaCas9 (ref. 29) (Staphy-
lococcus aureus Cas9) and its variants, the PAM may range from 3 to 4
bases; therefore, the number of unique flanking sequences of 4-ntlength
should preferably be ~256 (=4*). (2) The flanking sequences should have
highly diverse or nearly completely random sequence compositions.

To characterize the PAM of SpCas9 and its variants, we analysed
the human genome for all possible 20-nt-long sequences and their
flanking sequence diversities. For example, there are 8,471 occur-
rences of the sequence 5-GTGAGCCACTGTGCCTGGCC-3’ (part of an
Alu sequence; hereafter referred to as ‘Rep-1’) distributed across the
human genome (Fig. 1a; ~16,942 occurrences in a human diploid cell)
with nearly random flanking sequences of 10-nt length at its 3’ end,
making it a suitable candidate as the protospacer sequence for PAM
identification (Fig. 1b). For type Il Cas nucleases with 3’ PAMs, such
as SpCas9 and SaCas9, Rep-1can be directly used for PAM preference
characterization. Fortype V Cas nucleases with their PAM at the 5’ end
of the spacer, such as FnCas12a® (Francisella novicida Cas12a), the
reverse complementary sequence 5-GGCCAGGCACAGTGGCTCAC-3’
(‘Rep-1RC’) can be used as the protospacer sequence (Fig. 1b). Since
Cas nucleases can often tolerate a few base mismatches (off targets),
we calculated the numbers of 20-nt sequences with 1, 2, 3 and 4 base
mismatches. For Rep-1, these numbers were 48,207, 206,767, 579,336
and1,350,488, respectively,and >2 million in totalin the human genome
(hg38). Thus, using Rep-1 or Rep-1RC as the protospacer, there are
potentially >4 million targets in a single human diploid cell. A list of
example repeats, their occurrences, flanking sequence diversity and
their use are shown in Extended Data Fig. 1.

Toleverage these genomic repeats to characterize the PAM of vari-
ous CRISPR-Cas enzymes, the repeat sequence Rep-1was chosen as the

protospacer target. The corresponding spacer was cloned into aguide
RNA (gRNA) expression cassette to be used along with a plasmid that
encodes the candidate Cas nuclease. To identify which repeats within
thegenomewere cleaved in an experiment, we adapted the GUIDE-seq*
method to capture cleaved genomic sites in HEK293T cells (Fig. 1c).
Only those sites whose flanking sequences contain functional PAMs can
be cleaved by the Cas nuclease. Cell toxicity after large numbers of DSBs
occurinone cellwasreported previously when using CRISPR to target
highly repetitive element LINEI1 (ref. 30) or unique repeat sequences
associated with temozolomide mutational signature®. To assess this
toxicity, we measured cell viability in four different conditions, includ-
ingLipofectamine 3000 transfection controls, and in two different cell
lines (Methods). The results showed largely similar cell viability across
different transfection conditions at 24 h and 48 h after transfection
in HEK293T (Extended Data Fig. 2a) and HepG2 cells (Extended Data
Fig. 2b). During the GUIDE-seq data analysis, the candidate PAM was
setasunknown (‘(NNNNNNNNNN’) and 13,908 sites across the genome
were identified (Fig. 1d). The mismatch bases were typically located
at positions 8-11 of the targets and were transitions of the intended
bases (Fig. 1d). The resulting PAMs were then summarized using their
corresponding read counts as weights and used for SeqLogo plotting
(Fig.1e), which was stratified by perfect-match and mismatch targets.
Beyond the descriptive SeqlLogo, the consistent genomic background
sequences inspired us to create aniterative ‘seed-extension’ method.
This approach identifies statistically significant enriched motifs and
reports the percentages of edited genomic sites at each iteration step
(Fig. 1fand Methods).

Performance of GenomePAM on SpCas9, SaCas9 and FnCas12a

To evaluate the performance of GenomePAM, we chose three Cas
nucleases with well-established PAMs: SpCas9, SaCas9 and FnCas12a.
We used Rep-1for GenomePAM analysis of SpCas9 and SaCas9, and
Rep-1RC for FnCasl2a. The results showed that the PAM preferences
for SpCas9, SaCas9 and FnCas12a were NGG at 3/, NNGRRT (Ris G or
A)at3’and YYN (Y is T or C) at 5’ sides of the spacers, respectively,
consistent with previous results”'*'>?** (Fig. 2a—c; top, perfect match;
bottom, mismatch; Fig. 2d-f, 4-base heat map of relative PAM cleavage
value (PCV); Methods; GUIDE-seq results are listed in Supplementary
Tables1-3 and visualized in Supplementary Tables 4-6). GenomePAM
Table analysis showed that, for SpCas9 3’ PAM, the most significant
single base was the G at position 3 (1,103 (65.6%) of total 1,681 targets
inhuman genome edited), the most significant two bases were GG at
positions 2 and 3 (449 (94.1%) out of total 477 targets edited), and no
further significantbases (Fig. 2g). For SaCas9 3’ PAM, the GenomePAM
Table analysis showed increasing significance for G at position 3, GR
at3-4, GRR at 3-5, and GRRT at 3-6, respectively (Fig. 2h). The cor-
responding percentages of edited targets were 44.6%, 62.1-73.9%,
80.0-93.3%, and 96.7-98.0%, respectively (Fig. 2i). For FnCas12a 5’
PAM, the GenomePAM Table analysis showed a Y position-3(5.3-6.0%
of targets edited) and a YY at position -2 to -3 (8.5-9.6% of targets
edited). For the known PAM wobble bases®*, namely the 2nd posi-
tion of N[G/A]G in SpCas9 and the 6th position of NNGRR[T/A] in
SaCas9, the proportions of the prominent bases ([G] in SpCas9 and
[T]in SaCas9) in the mismatch target-associated PAMs were higher
thanthose perfect-match-associated PAMs (Fig. 2j; left, SpCas9; right,
SaCas9; both P<0.01). We also performed validation experiments in
threeother celllines, HepG2, Huh7 and HeLa cell lines (Extended Data
Fig.3). Theresults showed nearly identical PAM profiles as those using
HEK293T cells. Furthermore, we performed further tests using another
repeat sequence (Rep-2:5-GAGCCACCGTGCCTGGCCTC-3’) thatoccurs
1,126 times inthe human genome (-2,252 occurrences in a human dip-
loid cell) (Extended Data Fig. 1) as the protospacer for GenomePAM
analysis of SpCas9, SaCas9 and FnCasl12a. The GenomePAM results
were nearly the same, namely, NGG at 3’, NNGRRT at3’and TTTN at 5’
forthethree nucleases, respectively (Extended DataFig. 4). We further
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Fig.1|Method design. a, Genome-wide distribution of the Rep-1sequence in
the human genome. b, SeqLogo plot showing nucleotide frequency at each
positionin the 10 bases at 3’ of Rep-1and the 10 bases at 5’ of Rep-1RC (reverse
complement of Rep-1). Rep-1and Rep-1RC sequences can be used to characterize
PAM preferences of Cas nucleases with 3’ PAM and 5’ PAM, respectively.

¢, GenomePAM workflow for the identification of PAM preferences using the
highly repetitive genome sequence Rep-1as the protospacer and the GUIDE-seq
experiments to capture cleaved genomic sites of SpCas9. CMV, cytomegalovirus
promoter.d, An example of GUIDE-seq output. Each line shows one SpCas9
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and GUIDE-seq read counts of each site are shown on the right side. e, SeqLogo
plot summary for SpCas9 PAM preferences using their corresponding read
counts as weights and stratified by perfect-match and mismatch targets.

f, GenomePAM Table reporting the enriched PAM sequences and counts, along
with the numbers and percentages of corresponding genomic sites edited,

and associated statistical significance. P values were derived from two-sided
chi-square test.
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Fig. 2| Evaluation of the GenomePAM assay on the PAM characterization for position of SaCas9 PAM (right), by cleaved target types (perfect match versus
SpCas9, SaCas9 and FnCasl2a. a-i, SeqLogo results for SpCas9, SaCas9 and mismatch). Data are presented as mean + s.d. k-m, Correlations between PCV
FnCas12a PAM preferences in HEK293T cells with perfect-match spacers of GenomePAM and indel frequencies reported by previous methods: ref. 22
(a-c, top) and with mismatch spacers (a-c, bottom), and plotted in a 4-base (k), HT-PAMDA? (I) and PAM-DOSE” (m) across various SpCas9 PAM sequences,
heat map of relative PCV (d-f) and corresponding GenomePAM Tables (g-i). including canonical (NGGN) and non-canonical PAMs (NAGN, NGAN, NBGG;
Pvalues were derived from two-sided chi-square test. j, Percentage of ‘G’ ‘B’is C, Gor T). Linear regression lines are plotted, with 95% confidence intervals
atthe 2nd position of SpCas9 PAM (left) and percentage of ‘T’ at the 6th indicated as grey areas.
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compared SpCas9 canonical (NGGN) and non-canonical PAM (NAGN,
NGAN, NBGG; ‘B’is C, Gor T) PCVs derived from GenomePAM with indel
frequencies reported using three well-established methods*-****, The
analyses showed high correlations (Fig. 2k, |, versus two assays: R = 0.96,
P<1x107% Fig. 2m, versus PAM-DOSE: R=0.92, P< 2.6 x107%). Our
resultsrecapitulate the known PAM requirements of type lland type V
Casnucleases, demonstrating that our genome-based PAM determina-
tion method (GenomePAM) is effective.

Characterization of challenging PAM preferences

Long and complicated PAMs in naturally occurring Cas nucleases
pose a challenge to identifying their PAMs experimentally. We evalu-
ated the performance of GenomePAM on Campylobacter jejuni Cas9
(CjCas9), which was reported to require a 7-nt PAM NNNNACA** and
an 8-ntone NNNNRYAC™. We performed GenomePAM assay on CjCas9
using Rep-1as the protospacer in HEK293T cells. The results showed
that CjCas9 required NNNNRYAC as its PAM in HEK293T cells (Fig. 3a;
top, perfect match; bottom, mismatch). Because the optimal length
of protospacer for CjCas9 was shown to be 22 bases™, we tested using
extended Rep-1to 21 (5-YGTGAGCCACTGTGCCTGGCC-3’; YisCor
T) and 22 (5-GYGTGAGCCACTGTGCCTGGCC-3’) bases. The results
showed nearly the same NNNNRYAC PAM preferences for both 21
and 22 base protospacers (Fig. 3b,c; top, perfect match; bottom, mis-
match). Relative PCVs using these protospacers are visualized in heat
maps (Fig. 3d-f). GenomePAM Table analysis consistently showed the
most enriched sequence ACAC at positions 5-8 (Fig. 3g-i). The longer
protospacerswith21and 22 bases showed marked increasesin cleavage
activities compared with the 20-base spacer for CjCas9 (Fig. 3j). The
PAMrequirement on the 8th position wasrelatively relaxed (Fig.3b,c),
and there were increases in the numbers of off-target sites (Fig. 3a-c,
bottom).

Another challenging scenario in characterizing PAM preference
is when there is little preference. Engineering Cas nucleases to relax
PAM requirements can broaden potential applications, such as using
the SpRY variant of SpCas9 with nearly no PAM restriction (previously
described to be NRN > NYN)?*. Additional near-PAMless Cas variants
have also been developed®**. However, depletion-based methods may
notbe efficientinidentifying Cas nucleases with nearly no PAM prefer-
ences”. Being a positive selection method, GenomePAM found that
as expected, SpRY exhibited a very minimal PAM requirement, being
nearly PAMless across 5,003 perfect-match lociand 23,946 mismatch
lociin HEK293T cells (Fig. 3k).

GenomePAM for characterizing novel Cas PAM

After establishing the simplicity and accuracy of the GenomePAM assay
inidentifying various Cas nucleases, we sought to demonstrate its util-
ityin PAMidentification for novel Cas discovery. Using ametagenomics
approach (Methods) to analyse recent datain the NCBISequence Read
Archive (SRA), we identified one novel type V-A CRISPR-Cas candidate
derived from Ruminococcus Dsp902787825, named RuCasl2a (Fig. 4a).
We performed the GenomePAM assay using ‘Rep-1’ as the protospacer
tocharacterizeits potential activity and 5 PAMrequirement. The result
revealed that the PAM preference of RuCas12awas TTYN atits 5’ end
(Fig.4b,c). The GenomePAM Table showed dominant TTC at positions
-4to-2 (Fig.4d, bottomrow). To further validate and comprehensively
evaluate genome editing efficiency of RuCasl2a, we used 20 regular
(non-repetitive) genomic sites containinga 5’ end ‘TTTG’ in human
genes CD34,CFTR,DNMTI,EMXI1,HBB, LPA, POLQ, RFN2, TTR and VEGFA
(spacerand primer sequences are listed in Supplementary Table 7). The
editing efficiencies ranged from 3.4% t0 40.6% across the 20 genomic
lociin HEK293T cells (Fig. 4¢e). We also applied GenomePAM for iden-
tifying PAM of novel type Il Cas nuclease and found a novel Cas9 from
Tissierella sp., named TiCas9. TiCas9 clusters closely to SpCas9 and
ScCas9, implying that it is a type II-A Cas nuclease (Fig. 4f). Genome-
PAM analysis revealed that TiCas9 had an NNNACT PAM (Fig. 4g-i).

We further validated its potencies across 20 endogenous loci with
a3’-NNNACT PAM in genes CD34, CTCF, EMX1, POLQ and VEGFA in
HEK293T cells, which showed up to ~30% editing efficiency using its
native gRNA scaffold (Fig. 4j; spacer and primer sequences are listed
inSupplementary Table 8).

GenomePAM facilitates Cas PAM engineering

Engineering Cas PAM preference to expand targetability represents
an attractive strategy for broad applications”. To this end, we ques-
tioned whether GenomePAM could facilitate Cas variant discovery.
We assessed this using TiCas9 as an example by first applying Genome-
PAM to profile pooled mutant variants and, upon evidence of altered
mixed PAMs, applied GenomePAM characterization of single-mutant
variants (Fig. 5). Because there are many Cas9 nucleases recognizing
G/C-rich PAM, we aimed to engineer TiCas9 for recognizing A/T-rich
PAM, namely, to relax the Cat position 5of NNNACT. Using AlphaFold 3
(ref. 38), weidentified that K1315 was the only residue found to interact
with G at position 5 on the complementary strand (Fig. 5a). We con-
structed an NNK library encoding for all 20 amino acids at position
1315. GenomePAM analysis of the pooled variants showed dramatically
altered base compositions at position 5, without affecting positions
4 and 6, in the aggregated PAMs (Fig. 5b—d). We then assessed all the
19 a.a. variants individually. The variant K1315Q showed completely
no restriction at position 5 (Fig. 5e-g), namely, an ANT PAM at posi-
tions 4-6, while another 18 variants showed varied preferences at
position 5 (Extended Data Fig. 5). Then, 16 endogenous sites in RNF2
harbouring PAM positions 4-6 (4 ACT, 4 ATT, 4 AGT and 4 AAT) were
used to validate the variant K1315Q versus wild type (WT) (spacer and
primer sequences are listed in Supplementary Table 9). The results
were consistent with SeqLogo, PCV visualization and the GenomePAM
Table (Fig. Sh versus 5b-g). Interestingly, even though the SeqLogo of
the variant K1315Q showed no noticeable dominant base at position
5 (Fig. 5e), the GenomePAM Table (Fig. 5g) showed that, for PAM posi-
tions 4-6, the proportions of genome-wide target sites edited were
highest with AGT, followed by ACT, and the lowest with AAT and ATT,
largely consistent with the indel percentages at the 16 endogenous
sites tested individually (Fig. 5h).

Comparison of genome-wide potency and specificity

Many SpCas9 variants have been developed to reduce off-target effects
(for example, SpCas9-HF1(ref. 39), HypaCas9 (ref. 40), eSpCas9(1.1)*,
Sniper-Cas9 (ref. 42) and Sniper2L-Cas9 (ref. 43)) and broaden PAM
compatibilities (for example, xCas9 (ref. 44)). Oftentimes, dozens of
genelociare used to assess the fidelity and activity of Cas9 variants*®*%
It would be desirable to simultaneously evaluate Cas nuclease
potency and specificity with a less laborious method than traditional
library-based approaches**. A method based onlarge-scale synthetic
oligos (n=26,891) containing targeting sequences and mismatch
sequences has been developed for this purpose”. GenomePAM uses
asingle protospacer oligo that provides thousands of perfect-match
sites and millions of mismatch sites in one human cell. Therefore,
we sought to evaluate the feasibility of simultaneously comparing
genome-wide potency and specificity of different Cas9 variants. We
performed GenomePAM experiments with ‘Rep-1’ as the targeting
protospacer for WT SpCas9 and six variants in parallel (SpCas9-HF1,
eSpCas9(1.1), HypaCas9, xCas9, Sniper-SpCas9, and Sniper2L-SpCas9),
with the same amounts of Cas and of sgRNA expression plasmids
(Extended DataFig. 6). The ratios of on-to-off target sites were highest
for SpCas9-HF1 (mean 1.13), eSpCas9(1.1) (mean 1.08) and HypaCas9
(mean 0.93), followed by xCas9 (mean 0.57), Sniper2L-Cas9 (mean 0.23)
and Sniper-Cas9 (mean 0.20), and lowest for WT SpCas9 (mean 0.13)
(Fig. 6a). Similarly, the ratios of on-to-off target reads were 1.12, 2.28,
0.78,0.75,0.36, 0.31 and 0.17, respectively (Fig. 6b). To evaluate Cas9
cleavage dynamics withincreasing probing data, we sampled datasets
from 100,000 up to1 million sequencing reads for GUIDE-seq analysis.
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Fig. 3| Evaluation of the GenomePAM assay on the PAM characterization

for CjCas9 and SpRY. a-i, SeqLogo results for CjCas9 when using different
lengths of spacers: 20 bases (GTGAGCCACTGTGCCTGGCC') (a), 21

bases (YGTGAGCCACTGTGCCTGGCC’; ‘Y’is ‘C’ or ‘T’) (b) and 22 bases
(‘GYGTGAGCCACTGTGCCTGGCC’) (c) with perfect-match cleaved sites (top) in
HEK293T cells and in their mismatch cleaved sites (bottom), and corresponding

4-base heat map of relative PCVs (d-f) and GenomePAM Tables (g-i). Pvalues
were derived from two-sided chi-square test. j, The numbers of perfect-match
sites (left) and mismatch sites (right) cleaved by CjCas9 using 20-nt, 21-nt and
22-nt spacers. k, SeqLogo results for SpRY PAM preferences in HEK293T cells with
perfect-match spacers (left) and mismatch spacers (right).
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Fig. 4 |Novel Cas nuclease discovery and their PAM identifications using the
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b-d, SeqLogo results for RuCas12a PAM preferences in HEK293T cells with
perfect-match spacers (b, top) and mismatch spacers (b, bottom), associated
4-base heat map of relative PCV (c) and the GenomePAM Table (d). Pvalues
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mean +s.d. f, Phylogenetic tree for the type Il CRISPR-Cas system, TiCas9.
g-i,SeqLogo results for TiCas9 PAM preferences in HEK293T cells with perfect-
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sitesin human genes CD34, CTCF, EMX1, POLQ and VEGFA with a3’-NNNACT PAM.
Data are presented as mean + s.d.
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Fig. 5|Structure-guided engineering for altered PAM preference of TiCas9.

a, Left: the structure of the TiCas9 and sgRNA complex was predicted using
AlphaFold 3 and visualized in PyMOL 3.0. The PAM-interacting domain
containing polar residue-DNA interactions within 4 A are shown. Middle:
hydrogen bonds between K1315 or Q1191 and nitrogenous base in the anti-sense
strand of PAM are indicated by yellow dashed line, with corresponding distances
labelled. Right: SeqLogo showing the GenomePAM result of TiCas9 WT.

b-d, SeqLogo visualization of the 3’ PAM preference of the pooled NNK library

of the TiCas9 1315 variants (b), the associated 4-base heat map of relative PCV

(c) and the GenomePAM Table (d). Pvalues were derived from two-sided chi-
square test. e-g, SeqLogo visualization of the 3’ PAM preference of the TiCas9
K1315Q variant (e), the associated 4-base heat map of relative PCV (f) and the
GenomePAM Table (g). P values were derived from two-sided chi-square test.

h, Indel percentages using TiCas9 WT and its K1315Q variant on 16 endogenous
sites in RNF2harbouring different PAM sequences (positions 4-6: ACT, ATT, AGT
and AAT). Dataare presented as mean * s.d.
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downsampled datasets, from 0.1 million to 1 million raw sequencing reads.

e, Relative activities (defined as the number of perfect-match sites relative to that
of WT SpCas9) and specificities (defined as the ratio of perfect-match to mismatch
site numbers relative to the ratio in SpCas9-HF1) for seven SpCas9 variants.

The number of on-target sites identified given the same amount of
sequencing data was highest (the most potent) in WT, followed by
Sniper2L-SpCas9, comparable in Sniper-SpCas9 and eSpCas9(1.1), and
lowest in SpCas9-HF1, HypaCas9 and xCas9 (Fig. 6¢). The numbers of
off-target sites identified given the same amount of data were lowest
(the most specific) inxCas9, HypaCas9, SpCas9-HF1and eSpCas9(1.1),
comparable in Sniper-SpCas9 and Sniper2L-SpCas9, and highest (the
least specific) in WT (Fig. 6d).

To compare general activity and specificity of different SpCas9
variantsinone place, we used the IM-read datasets. We defined relative
activity asthe number of perfect-match sites relative to the number of

perfect-match sites identified by WT SpCas9, and relative specificity
astheratio of perfect-match to mismatch target site numbers relative
tothesameratioin SpCas9-HF1 (because SpCas9-HF1 had the highest
ratio among the seven SpCas9 tested here) (Fig. 6e) The scatterplot
showed that WT and Sniper2L-SpCas9s were more potent but less spe-
cificthan other variants, whereas eSpCas9, SpCas9-HF1and HypaCas9
were more specificbutless potent than WT SpCas9 (Fig. 6e). To evaluate
whether using a different repetitive spacer for GenomePAM can affect
general activity and specificity, we used Rep-3 (Extended Data Fig. 1)
and the results were similar to those obtained with Rep-1 (Extended
DataFigs.7and8).
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Fig.7| The GenomePAM assay profiles of chromosome accessibility when
using SpCas9 and targeting ‘Rep-1’in human cell lines HeLa, HepG2 and Huh7.
The proportion of cleavage read counts in each 5-million-base chromosomal
window was divided by the proportionin the corresponding chromosomal

window in the HEK293T cells (mean of triplicates) and log, transformed. A higher
cleavage proportion relative to HEK293T is coloured in red and arelatively lower
proportioninblue.

Profiling chromatin accessibility in different human cell lines
Chromatin conformation has been shown to affect Cas nuclease
genome editing*®*” on relatively small numbers of genomic targets
but not on the genome-wide scale. To assess genome-wide targeting
profilesindifferent celllines, we performed GenomePAM assays using
SpCas9 and ‘Rep-1’'in HEK293T, HepG2, Huh7 and HeLa cell lines in
triplicates (Fig. 7). Genome-wide chromatin accessibility was defined
as the number of targeting reads per 5-M-base chromosome window.
Relative to HEK293T, the results from triplicates of the same cell line
showed consistent and reproducible genome-wide chromatin profiles
(Extended Data Fig. 9). Interestingly, hepatocyte-derived cell lines
HepG2and Huh7 showed very similar chromatin accessibility profiles
in contrast to HeLa cells, indicating similar chromatin accessibility in
the same tissue (Fig. 7).

Discussion

Inthis study, we developed anew method called GenomePAM and dem-
onstrated its simplicity, accuracy and capability in assaying PAM prefer-
ences of previously established SpCas9, SaCas9 and FnCas12anucleases,
as well as complicated and challenging PAM recognitions as in SpRY
and CjCas9. We also demonstrated the potential of GenomePAM for
simultaneous comparison of potencies (thousands of perfectly matched
loci) and, when combined with GUIDE-seq, fidelities (tens of thousands
of off-target sites) of various Cas nucleases and variants. Compared with
other PAMidentification methods using regular PCR amplicon sequenc-
ing, GenomePAM uses GUIDE-seq and thus requires relatively more skills

to perform. However, GUIDE-seq has been one of the main methods for
assessing CRISPR off-target effects in both research and therapeutic
settings***°. Using GenomePAM, we rapidly identified one type Il Cas
TiCas9 and onetype V Cas RuCasl2athatarebothactivein human cells.
Directed by AlphaFold 3, we further accelerated the PAM engineering
of TiCas9 to expand its targetability using GenomePAM. In addition,
we demonstrated at the genome-scale that genomic accessibility of a
given CRISPR-Cas design differs among cells of different tissue types.
We envision that GenomePAM will be widely useful for the discovery,
characterization and comprehensive evaluation of PAM recognition,
potency and fidelity of CRISPR-Cas nucleases and engineered variants.

GenomePAM is capable of direct identification of challenging
PAMs in human cells. Different PAM preferences for CjCas9 have been
reported. Aninsilico prediction followed by a biochemical digestion
assay reported that the PAM for CjCas9 was NNNNACA**, while an
invitro cleavage assay followed by in vivo second-step analyses on each
of the positions from 5 to 8 showed that the optimal PAM was NNNN-
RYAC®.Maintaining large-scale libraries consisting of many sequences
is challenging. Previous methods have attempted to address this by
using sequential rounds of experiments in exceptionally challenging
situations, with progressively lengthened PAM candidate sequences'>',
Maintaining rich library complexities in large-scale screening experi-
ments is often challenging, but is not an issue in GenomePAM since
every single cell contains one full set of potential PAM candidates, and
maintaining PAM candidate sequence diversity is also not an issue in
GenomePAM. We used GenomePAM in a one-round experiment directly
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inhuman cells and showed that, without previous protein purification
and without introducing a library of synthetic oligos, the PAM prefer-
ence of CjCas9 was NNNNRYAC. Since GenomePAM is a positive selec-
tion method, it can be used to efficiently identify PAM requirements
when there are no preferences®.

Methods that can compare potency and fidelity of various Cas
nucleases simultaneously are highly desirable. One such method
involves constructing stable cell lines with balanced expression of Cas
nucleases and variants to be compared, followed by transduction of a
large pool of synthetic oligos (n = 26,891, on- and off-target sequences)
at a carefully controlled multiplicity of infection (MOI) into these sta-
ble expression cells to compare potency and fidelity of various Cas
nucleases. One advantage of this approachis thatitincludes different
on-target and off-target sequences. GenomePAM takes advantage of
highly repetitive sequences in every cell (thousands of on-target and
tens of thousands of off-target sequences), is much simpler and of low
cost. One limitation of GenomePAM s that it uses relatively limited kinds
of on-target sequences, although they appear thousands of timesin one
cell. However, this can be compensated for by using different repetitive
sequences, such as Rep-1, Rep-3 or Rep-4 for result confirmation and
validation, and in different cell types. Indeed, our results showed that
using different sequences (Rep-1, Rep-2 or Rep-3) as the protospacers
for GenomePAM analyses gave the same results in PAM characteriza-
tions for the different Cas nucleases tested in this study. However, anew
Cas nuclease might have a scaffold sequence that interferes with the
repeats, potentially forming strong secondary structures and affecting
GenomePAMresults. We recommend using at least two different repeats
as GenomePAM spacers for novel Cas nucleases. Another possibility isto
combine different repetitive sequencesin one experiment, althoughwe
have not tested this ourselves yet. In such a case, bioinformatic analysis
would need to use onerepetitive sequence atatime and repeat the data
analysis for all sequences. Chromatin accessibility affects Cas nuclease
activity, as shown on a genome-wide scale. The GenomePAM assay is
minimally biased by chromatin accessibility, probably dueto thelarge
number of accessible perfect-match targetsin each cell.

Measuring chromatin accessibility isimportantinunderstanding
basic cellular processes, including transcription, replication, chromo-
some segregation and DNA repair®™. A variety of techniques such as
Dnase-seq and ATAC-seq*>** enable quantifying genome-wide chro-
matin accessibility. Genome accessibility to CRISPR-Cas targeting is
known to differ among different cell types but has been demonstrated
only in limited and selected loci. GenomePAM demonstrates clearly
that the CRISPR-Cas genome-wide accessibility profiles differamong
different cell types. GenomePAM may complement existing methods
for studying genome-wide chromatin dynamics.

Methods

Identification of repeat sequences

The human genome (hg38) was used to calculate the frequencies of all
20-mer sequences usingjellyfish tools*. Because a spacer starting with
aGbaseat 5’ isrequired for most Cas nucleases, we selected all 20-mer
sequences starting with a5’ G. To avoid simple homopolymers and to
increase base composition diversity, we also excluded those 20-mers
containing ‘AAA’, ‘TTT’, ‘CCC’ or ‘GGG’. Among the remaining 20-mer
sequences, toretrieve their flanking sequences, we used BWA* to map
their chromosomal coordinates, and retrieved 10 bases upstream
and 10 bases downstream using samtools®. The diversity of the flank-
ing sequences of each of the 20-mer sequence was plotted using the
ggseqlogo® package. We defined PCV as the ratio of the percentage of a
given PAM sequence among all sequences of the same length captured
by GenomePAM to the percentage of the same PAM sequence among all
sequences of the same length in the human genome (hg38). To better
visualize the PAM recognition pattern in a 4-base heat map, arelative
PCV was calculated by log, transforming PCV and normalizing to the
PAM sequence with the highest PCV.

CRISPR-Cas identification

Metagenomes were downloaded from EMBL-EBI MGnify, NCBI Gen-
Bank and the Joint Genome Institute, or assembled in-house using
raw sequencing reads from the NCBISequence Read Archive. We used
a combinatorial pipeline that includes CCTyper®, CRISPRcasldenti-
fier’* and OPFI*° to predict putative Cas proteins. MinCED® was used
to identify CRISPR arrays; any CRISPR arrays located adjacent to the
predicted Cas, which typically comprises a CRISPR operon, were sub-
jectedtofurtheranalysis. Putative sequences of Cas were scanned using
Interproscan® to identify and annotate conserved domains. Selected
Cas proteins were aligned with MAFFT®, and a phylogenetic tree was
constructed using FastTree2 (ref. 64).

Cell culture

HEK293T (CRL3216, ATCC), HepG2 (CRL11997, ATCC) and HeLa (CCL-2,
ATCC) celllines were purchased from the American Type Culture Col-
lection (ATCC). The Huh7 (01042712, Sigma) cell line was purchased
from Sigma. HEK293T cells, HeLa cellsand Huh7 cells were cultured in
Dulbecco’s modified Eagle medium (C11995500BT, GIBCO), HepG2 cells
were cultured in Eagle’s minimum essential medium (30-2003, ATCC)
supplemented with 10% fetal bovine serum (10270-106, GIBCO), and
all cells were incubated at 37 °C with 5% CO, ina constant-temperature
incubator. Cell passaging was performed at a 1:3 split ratio when the
cellsreached 90% confluence.

Plasmids and oligonucleotides

The plasmids used in these experiments were purchased from the
non-profit plasmid repository Addgene. The plasmid lentiCRISPRv2
(Addgene, 52961) was used to express wild-type SpCas9; BPK2139
(Addgene, 65776) to express wild-type SaCas9; pY004 (Addgene,
69976) to express wild-type FnCasl12a; pET-CjCas9 (Addgene, 89754)
to express wild-type CjCas9; and the plasmids BPK1520 (Addgene,
65777),BPK2660 (Addgene, 70709), pU6-Fn-crRNA (Addgene, 78958)
and pU6-¢j-E sgRNA (Addgene, 169915) were used to express SpCas9
sgRNA, SaCas9 sgRNA, FnCasl12a crRNA and CjCas9 sgRNA, respec-
tively. Oligonucleotide duplexes corresponding to the target spacer
sequences were purchased from GENEWIZ.

Plasmid construction

Oligonucleotide duplexes corresponding to sgRNA sequences (paired
top and bottom single-stranded oligos) were annealed together using
the following programme: 95 °C, 3 min; 70 cycles of (95 °C, 1 min, with
-1°Cpercycle); 4 °Chold. Annealed DNA segments were inserted into
Bsmbl digested sgRNA expression plasmids. After transformation into
bacteriaandselection, the plasmids were purified by PureLink HiPure
Plasmid Midiprep kit (Invitrogen). Sequences of guide insertionin the
plasmids were confirmed by Sanger sequencing (BGI)

dsODN preparation

dsODN oligos were purchased from GENEWIZ with HPLC purification.
Eacholigo wasresuspended in 1x TE buffer (ThermoFisher,12090015)
to afinal concentration of 250 M. These oligos were then annealed
at100 pM in 1x annealing buffer (10 mM Tris-HCI, 50 mM NacCl, 1 mM
EDTA, pH7.4) onathermocycler. The programme was 95 °C, 3 min; 70x
(95°C,1min,-1°C per cycle); 4 °C hold.

Cell transfection

Guide RNAs and Cas protein plasmids were transfected into cellsusing
Lipofectamine 3000 transfection reagent (ThermoFisher, L3000015)
following manufacturerinstructions. Cells were cultured at a density
of1x10° per wellin a 24-well plate. For each well, 100 ng of gRNA and
400 ng of Cas expression plasmids together with 5 pmol of annealed
dsODN were mixed with 1 pl of P3000 reagents in 25 pl Opti-MEM
medium and then mixed with 1.5 pl Lipofectamine 3000 reagent in
25 pl Opti-MEM medium to generate a total volume of 50 pul DNA-lipid
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complex, followed by incubation for 10 min at room temperature. The
transfection complex was added into individual wells. The plate was
maintained in a cell culture incubator for 48-72 h.

Cell viability assay

HEK293T and HepG2 cells were seeded in 96-well plates at 2.0 x 10*
per well and transfected at four different conditions: (1) SpCas9
plasmid + Rep-1sgRNA plasmid + dsODN; (2) SpCas9 plasmid + Rep-1
sgRNA plasmid; (3) SpCas9 plasmid + non-targeting sgRNA plasmid
+dsODN; and (4) Lipofectamine 3000 only. Cell viability assay was
performed with Enhanced Cell Counting Kit-8 (Beyotime, C0043)
according to manufacturer instruction. Briefly, 10 pl CCK-8 labelling
reagent was added to each well and incubated at 37 °C with 5% CO, in
ahumidified atmosphere for1 h. Cell viability was then determined
using absorbance at450 nm and evaluated at O h, 24 hand 48 h after
transfection.

DNA extraction

Genomic DNA was extracted using the MiniBEST Universal Genomic
DNA Extraction kit (TaKaRa) and quantified using Qubit dsDNA HS
Assay kit (Invitrogen) in a Qubit 3.0 fluorometer.

GUIDE-seq

Genomic DNA was extracted at 48-72 h post transfection and 500 ng
of DNA was used for next-generation sequencing library construction
according to our previous work? with modification® (see updated
dsODN sequences and amplification primers with discussion notes
in Supplementary Table 10). Briefly, the library preparation proce-
dure contains enzymatic fragmentation, end repair, A-tailing, adaptor
ligation and two rounds of anchored nested PCR. The libraries were
quantified with KAPA Library Quantification kits and sequenced on
a NextSeq 1000 System (Illumina) using a 300-cycle kit (2x 150-bp
paired-end) with standard Illumina sequencing workflow (that is, no
need toadjustindexing cycles or use customized sequencing primers).
Sequencing data (FASTQ files) were analysed using the GenomePAM
pipeline with the off-target identification steps adapted from the
GUIDE-seq pipeline (https://github.com/tsailabS]/guideseq). The off
targets wereidentified using the criteria of <6 mismatch bases with the
intended targeting protospacer.

GenomePAM Table

To identify enriched PAM motifs over genomic background, we devel-
oped the algorithm GenomePAM Table®®, involving the computational
steps implemented in an R script to: (1) Identify the most significantly
enriched single-base motif: we define the edited value as the sum of
GUIDE-seq-detected genomic site numbers and GUIDE-seq read counts,
with the latter linearly scaled to match the range of the former. The
maximum value equals the highest number of genomic sites considered
for all combinatorial potential motifs. Within the same motif window,
achi-square test is used to compare the edited value against the cor-
responding genomic background counts among all motifs. (2) Extend
from the position identified in Step 1 bidirectionally: extend one base
towards the 5’ end or one base towards the 3’ end and calculate the new
edited values. Between the two extensions, the one with higher statisti-
cal significance is recorded and used for the next round of extension.
(3) Repeat Step 2: continue extending in both directions until the ends
of candidate bases are reached. Record all significant motifs without
limiting motif length. (4) Report enriched motifs: report the enriched
motifs along with the percentages of corresponding genomic sites
edited, retaining only those motifs with increasing percentages from
eachiteration step (Fig. 1f).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Details of target sites identified have been included in the Supple-
mentary Tables. Raw Fastq data are available at SRA (ID 1258724-BioP
roject-NCBI)®’. Source data are provided with this paper.

Code availability

The GenomePAM pipeline is available on GitHub®®. The only input file
required by the GenomePAM pipeline is the identifiedOfftargets.txt
from the GUIDE-seq pipeline.
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Extended Data Fig. 1| Occurrence and flanking sequence diversity of selected with their occurrences in human genome (hg38), diversity of flanking
repetitive sequences. The list shows 10 example repetitive sequences (Rep-1, 10 bases and explaining notes for their suitabilities to be used as spacer for

Rep-1RC, Rep-2, Rep-2RC, Rep-3, Rep-3RC, Rep-4, Rep-4RC, Rep-Ul and Rep-U2), GenomePAM analysis.
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Extended DataFig. 2 | Cell viability assay when transfected with four different 3) SpCas9 plasmid + non-target sgRNA plasmid + dsODN; and 4) Lipofectamine
conditions in HEK293T (a) and HepG2 (b) cells. 1) SpCas9 plasmid + Rep-1sgRNA 3000 only. Absorbance at 450 nm were evaluated O h, 24 h and 48 h after
plasmid + dsODN; 2) SpCas9 plasmid + Rep-1sgRNA plasmid; transfection.
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Extended Data Fig. 3 | Evaluation of GenomePAM on SpCas9 in three other cell lines than HEK293T. SeqLogo results for SpCas9 proteins PAM preferences in HepG2
(a,b), Huh7 (¢, d) and HeLa (e, f) cells. (a, ¢, ) were summarized by associated perfect match spacers and (b, d, f) mismatch spacers.
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Extended Data Fig. 7| Using Rep-3 as the spacer, evaluation of Genome-PAM on seven variants of SpCas9 (SpCas9, SpCas9-HF1, HypaCas9, eSpCas9(1.1), Sniper-
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